Strukturerede datatyper i C forklaret

Der er variabler af forskellige datatyper i C, såsom ints, chars og floats. Og de lader dig gemme data.

Og vi har arrays til at gruppere en samling af data af samme datatype.

Men i virkeligheden har vi ikke altid den luksus at have data af kun en type. Det er her, en struktur kommer ind i billedet. I denne artikel lærer vi mere om strukturerede datatyper i C.

Indholdsfortegnelse

A. Grundlæggende

  1. Definition og erklæring
  2. Initialisering og adgang til medlemmerne af en struktur
  3. Betjenes med strukturvariabel
  4. Array Of Structure
  5. Indlejret struktur

B. Hukommelsesallokering

  1. Datajustering
  2. Struktur polstring
  3. Strukturmedlemjustering
  4. Strukturpakning

C. Henvisninger

  1. Markør som medlem
  2. Markør til struktur
  3. Pointer og Array of Structure

D. Funktioner

  1. Fungerer som medlem
  2. Struktur som et funktionsargument
  3. Struktur som funktionsretur

E. Selvhenvisende strukturer

F. Konklusion

Lad os komme i gang, skal vi?

Grundlæggende

1. Definition og erklæring

En struktur er en samling af en eller flere variabler, muligvis af forskellige typer, grupperet under et enkelt navn. Det er en brugerdefineret datatype.

De hjælper med at organisere komplicerede data i store programmer, da de gør det muligt at behandle en gruppe af logisk relaterede variabler som en.

For eksempel kan en studerende have egenskaber som navn, alder, køn og karakterer. Vi kunne oprette en character-array for name, en integer-variabel til roll, en character-variabel for køn og en integer-array for marks.

Men hvis der er 20 eller 100 studerende, vil det være vanskeligt at håndtere disse variabler.

Vi kan erklære en struktur ved hjælp af structnøgleordet efter syntaksen som nedenfor:

 /* Syntax */ struct structureName { dataType memberVariable1; datatype memberVariable2; ... }; /* Example */ struct student { char name[20]; int roll; char gender; int marks[5]; }; 

Ovenstående erklæring definerer en ny datatype struct student. Hver variabel af denne datatype vil bestå af name[20], roll, genderog marks[5]. Disse er kendt som medlemmer af strukturen.

Når en struktur er erklæret som en ny datatype, kan variablerne for den datatype oprettes.

 /* Variable declaration */ struct structureName structureVariable; /* Example /* struct student st1; struct student st2,st3,st4; 

Hver variabel struct studenthar sine kopier af medlemmerne.

Et par vigtige nuggets:

  1. Medlemmerne af strukturen optager ikke hukommelse, før der oprettes en strukturvariabel.
  2. Du har måske bemærket, at vi også bruger structsom en variabelerklæring. Er det ikke kedeligt?

Ved hjælp af typedefnøgleordet i strukturerklæringen kan vi forhindre at skulle skrive structigen.

typedef struct students { char name[20]; int roll; char gender; int marks[5]; } STUDENT; /* or */ typedef struct { char name[20]; int roll; char gender; int marks[5]; } STUDENT; STUDENT st1,st2,st3,st4; 

Efter konvention bruges store bogstaver til typedefinitioner (såsom STUDENT).

3. Strukturdefinition og variabel erklæring kan kombineres som nedenfor.

struct student { char name[20]; int roll; chat gender; int marks[5]; }st1, st2, st3, st4; 

4. Brugen af structureNameer valgfri. Koden nedenfor er fuldstændig gyldig.

struct { char name[20]; int roll; char gender; int marks[5]; }st1, st2, st3, st4; 

5. Strukturer erklæres generelt øverst i kildekodefilen, selv før de definerer funktioner (du kan se hvorfor).

6. C tillader ikke variabel initialisering inde i en strukturdeklaration.

2. Initialisering og adgang til medlemmerne af en struktur

Som enhver anden variabel kan en strukturvariabel også initialiseres, hvor de er erklæret. Der er et en-til-en forhold mellem medlemmerne og deres initialiseringsværdier.

 /* Variable Initialization */ struct structureName = { value1, value2,...}; /* Example */ typedef struct { char name[20]; int roll; char gender; int marks[5]; }STUDENT; void main(){ STUDENT st1 = { "Alex", 43, 'M', {76, 78, 56, 98, 92}}; STUDENT st2 = { "Max", 33, 'M', {87, 84, 82, 96, 78}}; } 

For at få adgang til medlemmerne skal vi bruge .( prikoperatøren ).

 /* Accessing Memebers of a Structure */ structureVariable.memberVariable /* Example */ printf("Name: %s\n", st1.name); printf("Roll: %d\n", st1.roll); printf("Gender: %c\n", st1.gender); for( int i = 0; i < 5; i++) printf("Marks in %dth subject: %d\n", i, st1.marks[i]); /* Output */ Name: Alex Roll: 43 Gender: M Marks in 0th subject: 76 Marks in 1th subject: 78 Marks in 2th subject: 56 Marks in 3th subject: 98 Marks in 4th subject: 92 

Medlemmerne kan initialiseres i variabeldeklarationen i en hvilken som helst rækkefølge ved hjælp af ..

STUDENT st3 = { .gender = 'M', .roll = 23, .name = "Gasly", .marks = { 99, 45, 67, 78, 94}}; 

Vi kan også initialisere de første par medlemmer og lade de resterende være tomme. De ikke-initialiserede medlemmer skal dog først være i slutningen af ​​listen.

Ikke-initialiserede integere og flydende-numre har en standardværdi på 0. Det er \0(NULL) til charskuespillere og strenge.

STUDENT st4 = { "Kviyat", 65}; /* same as { "Kviyat", 65, '\0', { 0, 0, 0, 0, 0} } */ 

3. Betjening med strukturvariablen

Like variables of primitive data types, we cannot perform arithmetic operations such as +, -, *, /, and so on. Likewise, relational and equality operators cannot be used with structure variables.

But, we can copy one structure variable to another, provided they belong to the same structure.

 /* Invalid Operations */ st1 + st2 st1 - st2 st1 == st2 st1 != st2 etc. /* Valid Operation */ st1 = st2 

We will have to compare the structure members individually to compare structure variables.

#include  #include  struct student { char name[20]; double roll; char gender; int marks[5]; }st1,st2; void main() { struct student st1= { "Alex", 43, 'M', {76, 78, 56, 98, 92}}; struct student st2 = { "Max", 33, 'M', {87, 84, 82, 96, 78}}; if( strcmp(st1.name,st2.name) == 0 && st1.roll == st2.roll) printf("Both are the records of the same student.\n"); else printf("Different records, different students.\n"); /* Copiying the structure variable */ st2 = st1; if( strcmp(st1.name,st2.name) == 0 && st1.roll == st2.roll) printf("\nBoth are the records of the same student.\n"); else printf("\nDifferent records, different students.\n"); } /* Output */ Different records, different students. Both are the records of the same student. 

4. Array of a Structure

You have already seen how we had to create 4 different struct student type variables to store the records of 4 students.

A better way would be to create an array of struct student (just like an array of ints).

struct student { char name[20]; double roll; char gender; int marks[5]; }; struct student stu[4]; 

To access the elements of the array stu and the members of each element, we can use loops.

 /* Taking values for the user */ for(int i = 0; i < 4; i++) { printf("Enter name:\n"); scanf("%s",&stu[i].name); printf("Enter roll:\n"); scanf("%d",&stu[i].roll); printf("Enter gender:\n"); scanf(" %c",&stu[i].gender); for( int j = 0; j < 5; j++) { printf("Enter marks of %dth subject:\n",j); scanf("%d",&stu[i].marks[j]); } printf("\n-------------------\n\n"); } /* Finding the average marks and printing it */ for(int i = 0; i < 4; i++) { float sum = 0; for( int j = 0; j < 5; j++) { sum += stu[i].marks[j]; } printf("Name: %s\nAverage Marks = %.2f\n\n", stu[i].name,sum/5); } 

5. Nested Structure

Nesting a structure means having one or more structure variables inside another structure. Like we declare an int member or char member, we can also declare a structure variable as a member.

struct date { int date; int month; int year; }; struct student { char name[20]; int roll; char gender; int marks[5]; struct birth birthday; }; void main(){ struct student stu1; 

The structure variable birthday of type struct birth is nested inside struct student. It should be clear that you cannot nest a structure variable of type struct student inside struct student.

Note that the structure to be nested has to be declared first. Using ., we can access the members contained within the inner structure as well as other members.

 /* Example */ stu1.birthday.date stu1.birthday.month stu1.birthday.year stu1.name 

Structure variables of different types can be nested as well.

struct birth { int date; int month; int year; }; struct relation { char fathersName[20]; char mothersName[20]; }; struct student { char name[20]; int roll; char gender; int marks[5]; struct birth birthday; struct relation parents; }; 

Memory Allocation

When a structure variable of some type is declared, structure members are allocated contiguous (adjacent) memory locations.

struct student { char name[20]; int roll; char gender; int marks[5]; } stu1; 

Her vil hukommelsen blive tildelt name[20], efterfulgt af roll, genderog marks[5]. Dette indebærer, at størrelsen på st1eller struct studentvil være summen af ​​størrelsen på dets medlemmer, ikke? Lad os kontrollere.

void main() { printf("Sum of the size of members = %I64d bytes\n", sizeof(stu1.name) + sizeof(stu1.roll) + sizeof(stu1.gender) + sizeof(stu1.marks)); printf("Using sizeof() operator = %I64d bytes\n",sizeof(stu1)); } /* Output */ Sum of the size of members = 45 bytes Using sizeof() operator = 48 bytes 
Da sizeof()operatøren vender tilbage long long unsigned int, skal du bruge den %I64dsom en formatspecifikator. Du bliver muligvis nødt til at bruge %llueller %lldafhængigt af din kompilator.

Brug %dvil give en advarsel - format '% d' forventer argument af typen 'int', men argument 2 har typen 'lang lang usigneret int'.

Brug af sizeof()operatøren giver 3flere byte end summen af ​​størrelsen på medlemmerne. Hvorfor? Hvor er de 3 byte i hukommelsen?

Let's answer the second question first. We can print the addresses of the members to find the addresses of those 3 bytes.

void main() { printf("Address of member name = %d\n", &stu1.name); printf("Address of member roll = %d\n", &stu1.roll); printf("Address of member gender = %d\n", &stu1.gender); printf("Address of member marks = %d\n", &stu1.marks); } /* Output */ Address of member name = 4225408 Address of member roll = 4225428 Address of member gender = 4225432 Address of member marks = 4225436 

We can see that the array marks[5] instead of being allocated from 4225433 has been allocated from 4224536. But why?

1. Data Alignment

Before looking at data alignment, it is important to know how the processor reads data from the memory.

A processor reads one word in one cycle. This word is 4 bytes for a 32-bit processor and 8 bytes for a 64-bit processor. The lower the number of cycles, the better is the performance of the CPU.

One way to achieve this is by aligning the data. Aligning means that a variable of any primitive data type of size t will always (by default) have an address that is a multiple of t. This essentially is data alignment. This takes place every time.

Aligned addresses for some data types

Data types Size (in bytes) Address
char 1 multiple of 1
short 2 multiple of 2
int, float 4 multiple of 4
double, long, * (pointers) 8 multiple of 8
long double 16 multiple of 16

2. Structure Padding

You may need to insert some extra bytes between the members of the structure to align the data. These extra bytes are known as padding.

In our above example, the 3 bytes acted as padding. Without them, marks[0] which is of type int (address multiple of 4) would have its base address as 4225433 (not a multiple of 4).

You can now probably see why structures can't be compared directly.

3. Structure Member Alignment

To explain this, we will take another example (you'll understand why).

struct example { int i1; double d1; char c1; } example1; void main() { printf("size = %I64d bytes\n",sizeof(example1)); } 

What would be the output? Let's apply what we know.

i1 is of 4 bytes. It will be followed by a padding of 4 bytes because the address of d1 should be divisible by 8.

This will be followed by 8 and 1 byte respectively for d1 and c1. Thus, the output should be 4 + 4 + 8 + 1 = 17 bytes.

 /* Output */ size = 24 bytes 

What? Wrong again! How? Through an array of struct example, we can understand better. We will also print the address of the members of example2[0].

void main() { struct example example2[2]; printf("Address of example2[0].i1 = %d\n", &example2[0].i1); printf("Address of example2[0].d1 = %d\n", &example2[0].d1); printf("Address of example2[0].c1 = %d\n", &example2[0].c1); } /* Output */ Address of example2[0].i1 = 4225408 Address of example2[0].d1 = 4225416 Address of example2[0].c1 = 4225424 

Let's suppose the size of example2[0] is 17 bytes. This implies that the address of example2[1].i1 will be 4225425. This isn't possible since the address of int should be a multiple of 4.

Logically, the possible address for example2[1].i1 seems to be 4225428, a multiple of 4.

This is wrong as well. Do you know why? The address of example2[1].d1 now will be ( 28 + 4 ( i1) + 3 ( padding)) 4225436 which is not a multiple of 8.

In order to avoid such misalignment, the compiler introduces alignment to every structure. This is done by adding extra bytes after the last member, known as structure member alignment.

In the example discussed at the start of this section, this wasn't required (which is why we needed this other example).

A simple way to remember is through this rule: Address of structure and structure length must be multiples of t_max. Here, t_max is the maximum size taken by a member in the structure.

For struct example, 8 bytes is the maximum size of d1. Therefore, there is a padding of 7 bytes to the end of the structure, making its size 24 bytes.

Following these two rules, you can easily find the size of any structure:

  1. Any data type stores its value at an address that is a multiple of its size.
  2. Any structure takes the size which is a multiple of the maximum bytes taken by a member.

Though we are able to lower the CPU cycles, there is a significant amount of memory going to waste.

One way to decrease the amount of padding to a possible minimum is by declaring the member variables in decreasing order of their size.

If we follow this in struct example, the size of the structure reduces to 16 bytes. The padding gets reduced from 7 to 3 bytes.

struct example { double d1; int i1; char c1; } example3; void main() { printf("size = %I64d bytes\n",sizeof(example3)); } /* Output */ size = 16 bytes 

4. Structure Packing

Packing is the opposite of padding. It prevents the compiler from padding and removes the unallocated memory.

In the case of Windows, we use the #pragma pack directive, which specifies the packing alignment for structure members.

#pragma pack(1) struct example { double d1; int i1; char c1; } example4; void main() { printf("size = %I64d bytes\n",sizeof(example4)); } /* Output */ size = 13 bytes 

Dette sikrer, at medlemmerne er justeret på en 1-byte grænse. Med andre ord skal adressen på en hvilken som helst datatype være et multiplum på 1 byte eller deres størrelse (alt efter hvad der er lavest).

Markører

Hvis du vil børste op med markører, inden du går videre, er her et link til en artikel, der dækker markører i dybden.

1. Markør som medlem

En struktur kan også have markører som medlemmer.

struct student { char *name; int *roll; char gender; int marks[5]; }; void main() { int alexRoll = 44; struct student stu1 = { "Alex", &alexRoll, 'M', { 76, 78, 56, 98, 92 }}; } 

Ved hjælp af .(prikoperatøren) kan vi igen få adgang til medlemmerne. Da rollnu har adressen på alexRoll, bliver vi nødt til at afvige for stu1.rollat få værdien (og ikke stu1.(*roll)).

 printf("Name: %s\n", stu1.name); printf("Roll: %d\n", *(stu1.roll)); printf("Gender: %c\n", stu1.gender); for( int i = 0; i < 5; i++) printf("Marks in %dth subject: %d\n", i, stu1.marks[i]); /* Output */ Name: Alex Roll: 43 Gender: M Marks in 0th subject: 76 Marks in 1th subject: 78 Marks in 2th subject: 56 Marks in 3th subject: 98 Marks in 4th subject: 92 

2. Markør til struktur

Ligesom heltalsmarkører, arraymarkører og funktionsmarkører har vi også markører til strukturer eller strukturmarkører .

struct student { char name[20]; int roll; char gender; int marks[5]; }; struct student stu1 = {"Alex", 43, 'M', {76, 98, 68, 87, 93}}; struct student *ptrStu1 = &stu1; 

Here, we have declared a pointer ptrStu1 of type struct student. We have assigned the address of stu1 to ptrStu1.

ptrStu1 stores the base address of stu1, which is the base address of the first member of the structure. Incrementing by 1 would increase the address by sizeof(stu1) bytes.

printf("Address of structure = %d\n", ptrStu1); printf("Adress of member `name` = %d\n", &stu1.name); printf("Increment by 1 results in %d\n", ptrStu1 + 1); /* Output */ Address of structure = 6421968 Adress of member 'name' = 6421968 Increment by 1 results in 6422016 

We can access the members of stu1 using ptrStu1 in two ways. Using  * (indirection operator) or using -> (infix or arrow operator).

With *, we will continue to use the .(dot operator) whereas with -> we won't need the dot operator.

printf("Name w.o using ptrStu1 : %s\n", stu1.name); printf("Name using ptrStu1 and * : %s\n", (*ptrStu1).name); printf("Name using ptrStu1 and -> : %s\n", ptrStu1->name); /* Output */ Name without using ptrStu1: Alex Name using ptrStu1 and *: Alex Name using ptrStu1 and ->: Alex 

Similarly, we can access and modify other members as well. Note that the brackets are necessary while using * since the dot operator(.) has higher precedence over *.

3. Pointer and Array of Structure

We can create an array of type struct student and use a pointer to access the elements and their members.

struct student stu[10]; /* Pointer to the first element (structure) of the array */ struct student *ptrStu_type1 = stu; /* Pointer to an array of 10 struct student */ struct student (*ptrStu_type2)[10] = &stu; 

Note that ptrStu_type1 is a pointer to stu[0] whereas ptrStu_type2 is a pointer to the whole array of 10 struct student. Adding 1 to ptrStu_type1 would point to stu[1].

We can use ptrStu_type1 with a loop to traverse through the elements and their members.

for( int i = 0; i name, ( ptrStu_type1 + i)->roll); 

Functions

1. Function as a Member

Functions can not be a member of a structure. However, using function pointers, we can call functions using . . Just keep in mind that this is not recommended.

 struct example { int i; void (*ptrMessage)(int i); }; void message(int); void message(int i) { printf("Hello, I'm a member of a structure. This structure also has an integer with value %d", i); } void main() { struct example eg1 = {6, message}; eg1.ptrMessage(eg1.i); } 

We have declared two members, an integer i and a function pointer ptrMessage inside struct example. The function pointer points to a function that takes an integer and returns void.

message is one such function. We initialized eg1 with 6 and message. Then we use . to call the function using ptrMessage and pass eg1.i.

2. Structure as a Function Argument

Like variables, we can pass individual structure members as arguments.

#include  struct student { char name[20]; int roll; char gender; int marks[5]; }; void display(char a[], int b, char c, int marks[]) { printf("Name: %s\n", a); printf("Roll: %d\n", b); printf("Gender: %c\n", c); for(int i = 0; i < 5; i++) printf("Marks in %dth subject: %d\n",i,marks[i]); } void main() { struct student stu1 = {"Alex", 43, 'M', {76, 98, 68, 87, 93}}; display(stu1.name, stu1.roll, stu1.gender, stu1.marks); } /* Output */ Name: Alex Roll: 43 Gender: M Marks in 0th subject: 76 Marks in 1th subject: 98 Marks in 2th subject: 68 Marks in 3th subject: 87 Marks in 4th subject: 93 

Note that the structure struct student is declared outside main(), at the very top. This is to ensure that it is available globally and display() can use it.

If the structure is defined inside main(), its scope will be limited to main().

Passing structure members is not efficient when there are a large number of them. Then structure variables can be passed to a function.

void display(struct student a) { printf("Name: %s\n", a.name); printf("Roll: %d\n", a.roll); printf("Gender: %c\n", a.gender); for(int i = 0; i < 5; i++) printf("Marks in %dth subject: %d\n",i,a.marks[i]); } void main() { struct student stu1 = {"Alex", 43, 'M', {76, 98, 68, 87, 93}}; display(stu1); } 

If the size of the structure is large, then passing a copy of it won't be very efficient. We could pass a structure pointer to a function. In this case, the address of the structure is passed as an actual argument.

void display(struct student *p) { printf("Name: %s\n", p->name); printf("Roll: %d\n", p->roll); printf("Gender: %c\n", p->gender); for(int i = 0; i marks[i]); } void main() { struct student stu1 = {"Alex", 43, 'M', {76, 98, 68, 87, 93}}; struct student *ptrStu1 = &stu1; display(ptrStu1); } 

Passing an array of structure to a function is similar to passing an array of any type to a function. The name of the array, which is the base address of the array of the structure, is passed to the function.

void display(struct student *p) { for( int j = 0; j name); printf("Roll: %d\n", (p+j)->roll); printf("Gender: %c\n", (p+j)->gender); for(int i = 0; i marks[i]); } } void main() { struct student stu1[10]; display(stu1); } 

3. Structure as a Function Return

We can return a structure variable, just like any other variable.

#include  struct student { char name[20]; int roll; char gender; int marks[5]; }; struct student increaseBy5(struct student p) { for( int i =0; i < 5; i++) if(p.marks[i] + 5 <= 100) { p.marks[i]+=5; } return p; } void main() { struct student stu1 = {"Alex", 43, 'M', {76, 98, 68, 87, 93}}; stu1 = increaseBy5(stu1); printf("Name: %s\n", stu1.name); printf("Roll: %d\n", stu1.roll); printf("Gender: %c\n", stu1.gender); for(int i = 0; i < 5; i++) printf("Marks in %dth subject: %d\n",i,stu1.marks[i]); } /* Output */ Name: Alex Roll: 43 Gender: M Marks in 0th subject: 81 Marks in 1th subject: 98 Marks in 2th subject: 73 Marks in 3th subject: 92 Marks in 4th subject: 98 

The function increaseBy5() increases the marks by 5 for subjects where, after increasing the marks, it is less than or equal to 100. Note that the return type is a structure variable of type struct student.

While returning a structure member the return type has to be that of the member.

A structure pointer can also be returned by a function.

#include  #include  struct rectangle { int length; int breadth; }; struct rectangle* function(int length, int breadth) { struct rectangle *p = (struct rectangle *)malloc(sizeof(struct rectangle)); p->length = length; p->breadth = breadth; return p; } void main() { struct rectangle *rectangle1 = function(5,4); printf("Length of rectangle = %d units\n", rectangle1->length); printf("Breadth of rectangle = %d units\n", rectangle1->breadth); printf("Area of rectangle = %d square units\n", rectangle1->length * rectangle1->breadth); } /* Output */ Length of rectangle = 5 units Breadth of rectangle = 4 units Area of rectangle = 20 square units 

Notice we have allocated the memory of size struct rectangle dynamically using malloc(). Since it returns a void pointer, we have to typecast it to a struct rectangle pointer.

Self-Referential Structure

We discussed that pointers can be a member of a structure too. What if the pointer is a structure pointer? The structure pointer can either be of the same type as the structure or different.

Self-referential structures are those which have structure pointer(s) of the same type as their member(s).

struct student { char name[20]; int roll; char gender; int marks[5]; struct student *next; }; 

This is a self-referential structure where next is a struct student type structure pointer.

We will now create two structure variables stu1 and stu2 and initialize them with values. We will then store the address of stu2 in next member of stu1.

void main() { struct student stu1 = {"Alex", 43, 'M', {76, 98, 68, 87, 93}, NULL}; struct student stu2 = { "Max", 33, 'M', {87, 84, 82, 96, 78}, NULL}; stu1.next = &stu2; } 

We can now access the members of stu2 using stu1 and next.

void main() { printf("Name: %s\n", stu1.next->name); printf("Roll: %d\n", stu1.next->roll); printf("Gender: %c\n", stu1.next->gender); for(int i = 0; i marks[i]); } /* Output */ Name: Max Roll: 33 Gender: M Marks in 0th subject: 87 Marks in 1th subject: 84 Marks in 2th subject: 82 Marks in 3th subject: 96 Marks in 4th subject: 78 

Suppose we want a different structure variable after stu1, that is insert another structure variable between stu1 and stu2. This can be done easily.

void main() { struct student stuBetween = { "Gasly", 23, 'M', {83, 64, 88, 79, 91}, NULL}; st1.next = &stuBetween; stuBetween.next = &stu2; } 

Now stu1.next stores the address of stuBetween. And stuBetween.next has the address of stu2. We can now access all three structures using stu1.

 printf("Roll Of %s: %d\n", stu1.next->name, stu1.next->roll); printf("Gender Of %s: %c\n", stu1.next->next->name, stu1.next->next->gender); /* Output */ Roll Of Gasly: 23 Gender Of Max: M 

Notice how we have formed a link between stu1, stuBetween and stu3. What we have discussed here is the starting point of a Linked List.

Selvhenvisende strukturer er meget nyttige til oprettelse af datastrukturer såsom linket liste , stakke , køer , grafer og så videre.

Konklusion

Færdig! Vi har dækket alt fra definitionen af ​​en struktur til brugen af ​​selvhenvisende strukturer.

Prøv at opsummere alle de underemner, du læser. Hvis du kan huske dem, godt klaret! Læs dem, du ikke kan huske igen.

Det næste logiske trin ville være at lære mere om sammenkædede lister og forskellige andre datastrukturer, der er blevet brugt her.

Fortsæt med at lære. Bliv hjemme og vær sikker.